A. Puzzle From the Future
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
                                                                    output
standard output 


In the 2022 year, Mike found two binary integers a and b of length n (both of them are written only by digits 0 and 1) that can have leading zeroes. In order not to forget them, he wanted to construct integer d in the following way:

  • he creates an integer c as a result of bitwise summing of a and b without transferring carry, so c may have one or more 2-s. For example, the result of bitwise summing of 0110 and 1101 is 1211 or the sum of 011000 and 011000 is 022000;
  • after that Mike replaces equal consecutive digits in c by one digit, thus getting d. In the cases above after this operation, 1211 becomes 121 and 022000 becomes 020 (so, d won't have equal consecutive digits).

Unfortunately, Mike lost integer a before he could calculate d himself. Now, to cheer him up, you want to find any binary integer a of length n such that d will be maximum possible as integer.

Maximum possible as integer means that 102>21012<101021=21 and so on.

Input

The first line contains a single integer t (1t1000) — the number of test cases.

The first line of each test case contains the integer n (1n105) — the length of a and b.

The second line of each test case contains binary integer b of length n. The integer b consists only of digits 0 and 1.

It is guaranteed that the total sum of n over all t test cases doesn't exceed 105.

Output

For each test case output one binary integer a of length n. Note, that a or b may have leading zeroes but must have the same length n.

Example

input
Copy
5
1
0
3
011
3
110
6
111000
6
001011
output
Copy
1
110
100
101101
101110
Note

In the first test case, b=0 and choosing a=1 gives d=1 as a result.

In the second test case, b=011 so:

  • if you choose a=000c will be equal to 011, so d=01;
  • if you choose a=111c will be equal to 122, so d=12;
  • if you choose a=010, you'll get d=021.
  • If you select a=110, you'll get d=121.
We can show that answer a=110 is optimal and d=121 is maximum possible.

In the third test case, b=110. If you choose a=100, you'll get d=210 and it's the maximum possible d.

In the fourth test case, b=111000. If you choose a=101101, you'll get d=212101 and it's maximum possible d.

In the fifth test case, b=001011. If you choose a=101110, you'll get d=102121 and it's maximum possible d.


SOLUTION:

Basically we'll check for each bits by doing it's sum with the bits of b if it hold the equality with the pervious sum bits then just put the 0 in string else keep same :)

  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. void run() {
  4. int N;
  5. string B;
  6. cin >> N >> B;
  7. string A(N, '?');
  8. A[0] = '1';
  9.  
  10. for (int i = 1; i < N; i++) {
  11. A[i] = '1';
  12.  
  13. if (A[i] + B[i] == A[i - 1] + B[i - 1])
  14. A[i] = '0';
  15. }
  16.  
  17. cout << A << '\n';
  18. }
  19.  
  20. int main() {
  21.  
  22. int tests;
  23. cin >> tests;
  24.  
  25. while (tests--)
  26. run();
  27. }


Hope this would be helpful